
Cracking (KoolKrackTutorial 1.1)

by Smeger

version 1.1 November 9, 1996

**Who's It For?**

This tutorial is for people who have no idea how to crack 
programs and have no idea how to program anything.  It contains a
description of the assembly language commands usually used to 
crack, a description of the software tools used to crack, and an 
illustration of the technique of cracking.  The illustrative 
technique gives an example of cracking a program that displays an
annoying "Register Me" message and requests a registration code. 
However, the information given should be extensible to any 
cracking situation.  This tutorial should give a novice enough 
information to crack a program of average difficulty.

Within this tutorial, my definition of kracking is "changing the 
executable code of a program in order to change the behavior of 
the program."

The examples given in this tutorial are aimed at cracking 
application programs, but with the information given, it should 
be extendable to cracking any sort of computer software (i.e. 
startup extensions, control panels, etc.).

**What Do You Need?**

'Kay, you need some "can't live without" tools to crack any 
program.  You'll need MacsBug, ResEdit, and (optionally, but 
recommended) the Code Editor for ResEdit.  All of these can be 
found on the net; the Code Editor may be kinda tough to find, and
some versions of SuperResEdit have it built in.  The 
documentation that comes with all of these tells you how to 
install 'em.

Oh, and if you're like me, you'll also need a pencil and *lots* 
of paper.

MacsBug is a dissambler that lets you stop program execution at 



any time, at particular times, change anything in RAM, manipulate
your computer's registers, alter program execution, cook toast, 
and lots of other good stuff.  Much, much more on it later.

ResEdit is a resource editor.  On the Macintosh, files have two 
'forks,' a data fork (for data) and a resource fork (for 
resources, duh).  The data fork contains whatever the guy that 
wrote the program wants, while the resource fork contains 
'chunks' of behaviors, styles, icons, cursors, fonts, or 
whatever.  With ResEdit, you can easily change icons, fonts, 
cursors, the appearance of dialog windows, the appearance of 
alerts, patterns, or *EVEN* the code itself (Note:  not on 
PowerMac native apps).

Resources are specified by both a four character 'type' and a 
numerical ID.  For example, the first code segment an application
ever loads is specified by CODE ID 0.  Here are some common types
of resources: CODE
executable code for applications cdev
executable code for control panels INIT
executable code for extensions that run at startup CDEF
executable code that defines how a control (button, scroll bar, 
etc) behaves LDEF
executable code that defines how a graphical list of some sort 
behaves MDEF
executable code that defines how a menu behaves. WDEF
executable code that defines how a window behaves crsr
a color cursor CURS
a black & white cursor cicn
a color icon ICON
a black and white icon icl4
a 4 bit/pixel large color icon icl8
an 8 bit/pixel large color icon ICN#
a black & white large color icon ics4
a 4 bit/pixel small color icon ics8
an 8 bit/pixel small color icon ics#
a black & white small icon ppat
a color pattern ppt#
a collection of color patterns PAT#
a collection of black & white patterns sicn
a very small black & white icon snd 
a sound STR 
a string (collection of letters or numbers - a sentence) STR#
a collection of strings ALRT
a description of an alert window's placement & contents DLOG
a description of a dialog window's placement & contents MENU
a description of a menu's contents WIND



a description of a window's placement

This list is by no means comprehensive.  Also, anything can be 
found in any kind of resource, if the guy that wrote the program 
is weird.

ResEdit allows you to edit any resource.  When you open a file 
with ResEdit, you see a window containing a bunch of resource 
types.  Double clicking on a resource type will show you another 
window containing all the resource IDs of that type.  Double 
clicking an ID will allow you to edit the resource with the 
selected type and ID.  The editor window is different for 
different resource types.  For example, when editing icons, 
cursors, or patterns, the window shows the resource graphically 
and contains rudimentary graphical editing/manipulation tools.  
When editing executable code, the window shows the hexadecimal 
version and the ascii version of the resource.  When editing 
window descriptions, the editor shows a graphical version of the 
window.  When ResEdit does not recognize the resource type, it 
reverts to the default hex/ascii view used by executable code 
resources.

Raw hex/ascii is not incredible useful unless you are a computer.
A much nicer way of looking at executable code is in assembly 
language.  The CodeEditor extension allows you to view resources 
in assembly within ResEdit.  Whenever you edit a CODE, cdev, 
INIT, CDEF, MDEF or WDEF resource, instead of giving you raw hex 
and ascii, it dissassembles into assembly, lets you search for 
references to code snippits; basically, it's really cool.

If you have the CodeEditor extension, you can add additional 
resource types that it will edit.  From ResEdit, open your 
ResEdit Preferences file (found in SystemFolder:Preferences) and 
add RMAP resources.  If you've already installed CodeEditor, you 
can just check out any of the resources it edits (except CODE) to
see how it's done.

**Programming Languages You'll Be Working With, and Ones You 
Won't**

  
There are a few different types of language that you'll be 



dealing with here. There is assembly, which is a mnemonic 
language in which every instruction directly corresponds to 
something that your computer will do.  There is machine language,
which is the numerical equivalent of assembly language, and there
are high level languages, which you won't have to deal with 
unless you're lucky enough to have the source code of the 
software you want to crack.  Assembly language looks something 
like:

BNE.S      MYGETRESOURCE+00652

Machine language (for the same instruction) looks like:

6664

High level (for a different set of instructions) looks like:

if ((iAmKool && uAreNot) || (!iAmKool && uMightBe)) 
SomeonesKool();

**The Toolbox Traps & MacsBug**

All right, all I'm gonna cover is cracking programs that disable 
stuff or nag 'til you type in a registration code.  Figuring out 
how to generate serial numbers is a lot tougher, 'cause you need 
a detailed knowledge of assembly.

Usually, you use the Macintosh Toolbox Traps to find out what's 
going on.  The Toolbox is a set of routines that mac programmers 
can use to simplify common tasks, making writing code really 
simple 'cause you don't have to do anything.

A trap is a system routine that performs some sort of action, 
such as drawing a menu bar or a window.  Traps are stored within 
a program as a single instruction.  When the trap is called, the 
program will perform the trap, then continue execution normally.

I'm going to cover the basic traps, but if you need a complete 
reference to all 5000+, you could check Apple's web site, follow 
the links to Developer pages, and get all the Inside macintosh 



books.  You'll pretty much have to devote a hard drive to storing
'em on, but for basic cracking, you don't need 'em.

Here are some example program situations and the traps associated
with them.  These are *not* all associated with the nagging 
registration program.  If the program puts up a window in which 
you have to click ok or cancel or whatever before you can do 
anything else, the odds are good that the trap used to create the
window is GetNewDialog.  The software will probably use the 
ModalDialog trap to automate handling events like mouse clicks 
and key hits.  If the program is trying to get keystrokes at a 
weird time (like at system startup), it may use GetKeys.  Close 
to the beginning of most application programs, the InitGraf trap 
will be called (this initializes some drawing variables).  If the
program puts up a window to tell you something while some other 
program is in the foreground (this is called a notification), it 
probably uses NMInstall.  Programs have a main event loop that 
processes all the mouse clicks, key strokes, etc.  This loop will
usually call WaitNextEvent, or, if it was written in 1910 
(B.C.!), it may use GetNextEvent.  To handle a menu selection, it
will probably use MenuSelect.

'Kay, enough of this.  If I haven't covered it, check Inside 
macintosh.  Your trap will probably be in either Essential 
Toolbox or More Essential Toolbox. Check the chapter that seems 
relevant.

Allrighty, for our purposes we're going to assume that you want 
to crack a registration code, and the program puts up a window 
with Name, Organization, and Serial Number text boxes, has an 
Okay Button, and a Cancel button.  Here's the basic strategy.  
You want to check out the code after you've filled in the three 
text fields and hit enter.  You want to find where it determines 
whether your entry is valid, and make the program think that any 
entry is a valid one.

Now, you need to know a bit about MacsBug.  MacsBug is a debugger
for the macintosh; it allows you to examine code, memory, and 
even change things.  Mac User Warning:  MacsBug is *not* a pretty
program.  It takes over the entire screen.  The majority of the 
screen displays whatever you tell it to (the main display area). 
At the bottom of the screen, it shows the next three assembly 
language instructions to be executed.  At the very bottom of the 
screen is one line (the command line) where you can type 
commands.  On the left side of the screen it displays (from top 
to bottom) the contents of your computer's stack, the name of the
current running process, some environmental information, the 



state of the status register, the state of the eight data 
registers, and the state of the eight address registers.  

You can do some pretty cool stuff with MacsBug, and if I don't 
cover it here, try typing ? on the command line for very good on-
line help.  The most important thing you can do is set a break 
point so that the program you are running will pause and you will
drop into MacsBug on whatever toolbox trap you specify. This is 
an A-Trap Break.  It uses the command atb <the trap name>.  So, 
if you wanted to halt execution everytime the ModalDialog trap 
was found, you would use "atb modaldialog" (MacsBug is generally 
not case sensitive).  You can clear an individual a-trap break 
using atc (a-trap clear).  You can either use atc <the trap name>
for an individual trap or atc to clear 'em all.  By the way, 
using atb without a trap name will break on all traps, which I 
don't recommend unless you are clinically insane or chronically 
patient.  

Anyway, at the bottom of the MacsBug screen, you will see a 
listing of (usually) 3 instructions.  The current instruction is 
at the top, followed by the next two.  The offset from the 
beginning of the procedure or resource in which the instruction 
resides is at the left, followed by the address in memory of the 
instruction, followed by the instructions mnemonic (the assembly 
language version), followed by the instructions arguments if any.
On the right is the machine language version of the instruction. 
The machine language is in hexadecimal, and is what you would see
if you opened a CODE resource in ResEdit without the CodeEditor. 
At the top of this listing is the name of the resource in which 
the code lives, or the name of the procedure.  Finally, there may
be more info following a semicolon. For example, if I go into 
MacsBug now, I get this listing at the bottom of the screen:

_SetResFileAttrs

; Will Loop 
+006E2
4081B6DA
*DBEQ



D5,_SetResFileAttrs+006DE
; 4081B6D6
|57CD FFFA
+00636
4081B6DE
 BEQ.S
_SetResFileAttrs+006FE

; 4081B6F6
|6716 
+006E8
4081B6E0
 BRA.S
_SetResFileAttrs+00704

; 4081B6FC
|601A

The name of the procedure (in this case, it's a toolbox trap) is 
SetResFileAttrs.  The +006e2 is the offset from the beginning of 
the procedure. This instruction is 6E2 hexadicimal bytes from the
beginning of the SetResFileAttrs trap.  The 4081b6da is the 
actual address in memory of this instruction.  DBEQ is the 
mnemonic of the instruction.  D5,__SetResFileAttrs+006de is the 
instruction parameters.  This instruction is used for 
looping.  ;4081b6d6 tells what address it will go to if it loops.
57cd fffa is the machine language version of the instruction.  
The * in front of the mnemonic shows that it will be the next 
instruction to be executed.  The Will Loop on the top line 
indicates that the instruction is going to loop.  All 
instructions that conditionally jump elsewhere in memory will 
have something like this.

The next instruction shown is 636 hexadicimal bytes from the 
beginning of the SetResFileAttrs trap.  It is located at address 
4081B6DE in memory.  It's mnemonic is BEQ.S.  The paramters are 
_SetResFileAttrs+006FE.  This instruction is a "Branch if Equal" 
(more later).  If it branches, it will branch to 4081B6F6.  It's 
machine language equivalent is 6716.

**Aside - Ya Gotta Know Some Assembly Language**



Using MacsBug is sort of pointless without at least a meager 
knowledge of assembly language.  So, following are some of the 
assembly language commands important to cracking and finding your
way around a program.

**Bcc Instruction**
Programs utilize conditional branches.  This can be illustrative 
in a high level way by something like "if this is true go here, 
otherwise go over here."  In assembly language, this is done with
the mnemonic Bcc, where cc specifies what condition the statement
will test.  Some examples are BEQ (Branch if Equal), BNE (Branch 
if Not Equal), BGE (Branch if Greater than or Equal), BLE (Branch
if Less than or Equal), BGT (Branch if Greater Than), and BLT 
(Branch if Less Than).  There are a few more, but they aren't 
common.  If a branch statement's condition is satisfied, the next
instruction to be executed will be the instruction located at the
address specified by this branch instruction's parameters, 
instead of being the next instruction in memory.

The various branch instructions test bits in the Status Register 
(SR - found in the middle of the left side of MacsBug).  The bits
tested depend on the branch instruction used.  These bits are set
by the instructions proceeding the branch instruction (more 
later).  The state of the bits themselves is generally not 
relevant to kracking stuff.

A conditional branch's mnemonic will always begin with a B and 
the machine language equivalent will always begin with a 6.

You will probably want to change branch behavior.  If a branch is
going to branch, you may want to see what happens if it doesn't. 
Often, this is all it takes to crack a program; *finding the 
right branch is the tough part*.  If this is the current line in 
MacsBug:

_DeQueue



; Will Not Branch 
+000A8
408099fE   *BNE.S
_DeQueue+000CA

; 40809A20

|6620 
blah
40809A00
blah
blah

; blahhhh

|uggg

The next instruction to be executed is A8 hexadicimal byes from 
the beginning of the DeQueue trap.  It is located at address 
408099FE in memory.  It's mnemonic is BNE.S.  It's parameters are
_DeQueue+000CA.  This instruction will "Branch if Not Equal".  If
it branches, it will branch to address 40809A20.  It's machine 
language equivalent is 6620.

In this example, the instruction is not going to branch.  If you 
want to see what happens if it branches, type "pc=40809a20".  The
pc is a special address register that contains the address of the
next instruction to be executed.  This command changes the pc to 
the address that it would be if the instruction had branched 
(40809A20).  If this instruction *was* going to branch and you 
wanted to see what would happen if it didn't, you could use 
either "pc=40809a00" or "pc=pc+2".  It's "pc=pc+2" because the 
given BNE instruction takes two bytes in memory.  This can be 
seen by looking at the machine language instruction 6620. A byte 
is two hexadecimal digits, so 66 20 is two bytes.  If the machine
language had been 6600 ff9a, you would use pc=pc+4.

The various branch instructions are the 'big boys' of program 
cracking.  If a program does something you don't like, like 
displaying a "Register Me!" screen or pausing before quitting, 
changing how a branch executes will almost always override the 
offending behavior.  Again, FINDING THE CORRECT BRANCH STATEMENT 



IS THE TOUGH PART!!!!

**CMP Instruction**
There is also a compare instruction.  It's mnemonic is CMP.  It 
will (suprise!) compare two values and set the status register's 
(SR) bits according to the result of the comparison. It is used 
to set stuff up for a conditional branch statement.  It's form is
cmp.b, cmp.w, or cmp.l, plus two parameters.  The .b, .w, or .l 
corresponds to compare a byte, a word, or a long.  A byte is two 
hexadecimal digits, a word is four, and a long is eight.  The two
parameters are the things to be compared.  These can be numbers, 
addresses, the contents of addresses in memory, or a whole ton of
other things.  The compare instruction will almost always be 
followed by a conditional branch of the form Bcc (you just read 
about 'em unless you're skipping around like a moron).

**TST Instruction**
There is a similar assembly language instruction that compares a 
paramter to zero.  This is the TST (TeST) instruction.  It's form
is TST.B, TST.W, TST.L, plus one parameter. See the compare 
instruction for an explanation of the .B, .W, and .L part.  
Again, this is almost always followed by a conditional branch of 
the form Bcc.

**JSR and BSR Instructions**
Assembly language provides a way for a program to use the same 
bit of code in multiple places.  Code can jump to the repeated 
part, execute it, and then return.  This is done with the JSR 
(Jump to SubRoutine) instruction and the BSR (Branch to 
SubRoutine) instruction.  For our purposes, these instructions 
are the same.  Note that BSR is *not* a conditional branch.  All 
of the following info about the JSR instruction also applies to 
the BSR instruction.  

The JSR instruction will branch to a subroutine, execute the 
subroutine, then return to the instruction after the JSR.  It's 
syntax is JSR <address of the subroutine>.  If you're lucky, in 
MacsBug the address may be replaced by the name of the 
subroutine, instead of being something cryptic.  Unfortunately, 
this doesn't always happen.  

**RTS Instruction**
The RTS (ReTurn from Subroutine) will return program execution to



the instruction following the JSR or BSR that called the 
subroutine in which the RTS instruction is found.  It takes no 
parameters, and is always the last instruction in a subroutine.  
Since my symantecs suck, here's a sort of flowchartie type thing 
on how this works.

program is executing Routine A

a JSR or BSR instruction is executed with a parameter of Routine 
B - the instruction after this one in memory is Instruction A

program is now executing Routine B

an RTS instruction is found

program execution continues in Routine A at Instruction A

**MOVE Instruction**
The MOVE instruction moves something from one address in memory 
to another.  It's form is MOVE.B, MOVE.W, or MOVE.L, plus two 
parameters.  This instruction is commonly used to make a copy of 
something, or to pop stuff onto or off of the stack before or 
after calling a subroutine.  Most subroutines need some sort of 
data to work with, so the routine calling it needs to be able to 
communicate this data to the subroutine.  It can do this by 
pushing stuff onto a stack, where a stack is essentially just 
what it sounds like.  The stack can be viewed at the top left of 
the MacsBug screen.  The address register A7 always points to the
bottom of the stack.  The weird thing about this stack is that 
you don't push things onto the top of it.  The top is fixed, and 
things are pushed onto the bottom.  So, the stack grows 
downwards.  Often, subroutines return some sort of data on the 
stack.  After the subroutine has executed, this data can then be 
popped off of the stack for use by the calling routine.  Here's 
an example of an assembly language program passing three 
parameters (Parm1 - longword, Parm2 - word, and Parm3 - byte) to 
a subroutine called IAmASubroutine, then copying the result 
(which is a byte) into a variable called Result.  This is meant 
to be illustrative; in MacsBug, you won't see names like these, 
only weird looking stuff.

move.l
Parm1, -(A7)



move.w
Parm2, -(A7)

move.b
Parm3, -(A7)

jsr

IAmASubroutine

move.b
(A7)+, Result

All you really need to know is that -(A7) pops something onto the
stack, while (A7)+ pulls something back off.

As an aside, if the second parameter of the MOVE instruction is a
data register, the move instruction will also set the Status 
Register's (SR) bits so that a compare instruction is not 
necessary.  

A common use of this in the Registration Code Example is passing 
the serial number you had typed to a subroutine that checks it.  
The subroutine then returns a "yes or no" byte.  This is then 
checked.  Here's what this would look like:

move.l
<Address holding your registration code>, -(A7)

move.l
<some other type of info to check it against>, -(A7)

jsr

CheckItOut

move.b
(A7)+, D0

bne

ItsGood

ItsNotGood here



This pops my registration code onto the stack, pops something 
else onto the stack, calls the CheckItOut subroutine, moves the 
result into data register 0, then branches only if the result is 
not zero.

**NOP Instruction**
If you want an instruction that doesn't do anything except waste 
space (and you actually may), you can use the NOP (No OPeration) 
instruction.

(Continued in next Chapter)


